Introduction
For years, I've been fascinated by quantitative trading, automated trading systems, and any programmatic approach to market transactions. While I've experimented with various techniques, I've yet to develop a comprehensive Python package or a continuously running trading platform.
This marks the beginning of my journey to document every step of creating a fully functional trading bot—from individual components to final integration. My approach involves manually developing each module before leveraging AI for system integration.
Core Technical Skills Inventory
Rule-Based Trading Systems
I can replicate functionality similar to stock screening tools like "PlayStock's Stock Selection Treasure Chest" using Python.
Supervised Learning Trading Models
Example: Training CNN neural networks to make buy/sell decisions by analyzing price chart patterns.
Reinforcement Learning Trading Systems
- Defining simulated trading environments
- Crafting reward functions
- Implementing RL algorithms
- GPU-accelerated training processes
Automated Trade Execution
- Using GitHub Workflows/Render web services
- Automated data collection
- Predictive analytics
- Order placement systems
Chapter 1: Strategy Development Framework
The Strategy Class Hierarchy
Base Strategy Parent Class (BaseStrategy)
from abc import ABC, abstractmethod
import pandas as pd
class BaseStrategy(ABC):
def __init__(self, data: pd.DataFrame):
self.data = data
self.signals = pd.Series(index=self.data.index, dtype="object")
@abstractmethod
def generate_signals(self):
"""Child classes implement specific logic to populate signals ('buy','sell','hold')"""
pass
def get_signals(self) -> pd.Series:
return self.signalsMACD Strategy Implementation
class MACDStrategy(BaseStrategy):
def __init__(self, data: pd.DataFrame, fast=12, slow=26, signal=9):
super().__init__(data)
self.fast = fast
self.slow = slow
self.signal_period = signal
def generate_signals(self):
close = self.data['close']
ema_fast = close.ewm(span=self.fast, adjust=False).mean()
ema_slow = close.ewm(span=self.slow, adjust=False).mean()
macd = ema_fast - ema_slow
signal_line = macd.ewm(span=self.signal_period, adjust=False).mean()
self.signals = pd.Series(index=self.data.index, dtype="object")
self.signals[macd > signal_line] = 'buy'
self.signals[macd < signal_line] = 'sell'
self.signals[macd == signal_line] = 'hold'RSI Strategy Implementation
class RSIStrategy(BaseStrategy):
def __init__(self, data: pd.DataFrame, period=14, overbought=70, oversold=30):
super().__init__(data)
self.period = period
self.overbought = overbought
self.oversold = oversold
def generate_signals(self):
delta = self.data['close'].diff()
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
avg_gain = gain.rolling(self.period).mean()
avg_loss = loss.rolling(self.period).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
self.signals = pd.Series(index=self.data.index, dtype="object")
self.signals[rsi < self.oversold] = 'buy'
self.signals[rsi > self.overbought] = 'sell'
self.signals[(rsi >= self.oversold) & (rsi <= self.overbought)] = 'hold'Practical Implementation
Data Preparation
import yfinance as yf
import datetime
import pandas as pd
df = yf.download("BTC-USD", start="2023-01-01", end=datetime.datetime.now())Signal Generation
strategy = MACDStrategy(df)
strategy.generate_signals()
signals = strategy.get_signals()Visualization
import matplotlib.pyplot as plt
close = df['close']
plt.figure(figsize=(14,7))
plt.plot(close.index, close, label='Close Price', color='black')
buy_signals = signals == 'buy'
plt.scatter(close.index[buy_signals], close[buy_signals],
marker='^', color='green', label='Buy Signal', s=100)
sell_signals = signals == 'sell'
plt.scatter(close.index[sell_signals], close[sell_signals],
marker='v', color='red', label='Sell Signal', s=100)
plt.title('Price Chart with Buy/Sell Signals')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()👉 Complete trading bot source code
FAQ Section
Q: Why develop strategies as separate classes?
A: Class-based implementation enables modular strategy development, making it easier to:
- Add new strategies
- Maintain existing ones
- Combine multiple strategies
Q: How do I handle multiple cryptocurrencies?
A: The framework supports multi-asset analysis through proper data standardization. Simply ensure your DataFrame contains properly formatted price data.
Q: What's the best way to test strategies?
A: Implement comprehensive backtesting functionality before live deployment. This validates strategy effectiveness under historical market conditions.
Q: Can I combine MACD and RSI signals?
A: Absolutely! Create composite strategies that weigh signals from multiple indicators. This often produces more robust trading decisions.
👉 Advanced trading strategy resources
Next Steps
The subsequent chapters will cover:
- Backtesting engine development
- Risk management modules